Technology Assessment (TA): a framework for combination of tools

Getachew Assefa Division of Industrial Ecology, Department of Chemical Engineering and Technology, Royal Institute of Technology, Stockholm, Sweden

5/13/2004

TA – definition

UNEP's

- a category of policy studies
- provides decision-makers with an ordered set of analysed policy options and their implications for the economy, the environment and the social, political and legal processes and institutions of society
- intended to provide decision-makers with information about the possible impacts and consequences of a new technology or a significant change in an old technology

..... definition

- concerned with both direct and indirect/ secondary consequences
- both benefits and disadvantages
- mapping the uncertainties involved in any government or private use or transfer of a technology

TA - past and present

- 1972: UN Conference on Human Settlement, Stockholm,
 - "environmentally sound technologies..... alternatives to existing harmful technologies; adequately assessing their environmental consequences"
- 1972: Office of Technology Assessment (OTA) by US Congress
- 1992: UN Conference on Environment and Development, Rio de Janeiro
- 1995: OTA closure
 - for, among other things, methodological problems

..... past and present

- Institutes, boards, offices of Technology [Assessment] in 7 European countries -Parliamentary or independent
- European Parliament Technology Assessment (EPTA)
- International Association for Technology Assessment and Forecasting Institutions (IATAFI), sponsored by the UN

UNEP's TA programme called Environmental Technology Assessment (EnTA)

... past and present

- European Parliament Technology Assessment (EPTA).
- International Association for Technology Assessment and Forecasting Institutions (IATAFI), sponsored by the UN, was established in 1993 with a secretariat in Bergen, Norway.
- UNEP's TA programme called Environmental Technology Assessment (EnTA)

TA types

Basis: object of assessment, starting point	
 Project assessment TA Generic TA Problem assessment TA Policy assessment TA Global problematique TA 	 Project-induced TA Problem- induced TA Technology-induced TA
Basis: purpose	, objective
 Academic TA Industrial TA Parliamentary TA Executive power TA Laboratory TA 	 Awareness TA Strategic TA Constructive TA Back-casting TA

Steps in TA

1.TECHNOLOGY DESCRIPTION AND ALTERNATIVE PROJECTIONS

1.1 Data Acquisition1.2 Bounding theAssessment Domain1.3 Projection oftechnologicalAlternatives

2.IMPACT ASSESSMENT

2.1 Impact Criteria
Selection
2.2 Predicting and
Assessing Impacts
2.3 Impact
Comparisons and
Presentation

3. POLICY ANALYSIS

3.1 Implementation
of Technological
Alternatives
3.2 Search for
Permeating Issues,
Concerns, and
Uncertainties

Break-up analysis: title and subtitle

• Title

- Technology?
- Assessment?
- Subtitle
 - Framework?
 - Combination?
 - Tools?

Technology

- Technology (1859) practical application of knowledge especially in a particular area. related to ENGINEERING
- Engineering (1720) application of science and mathematics by which the properties of matter and the sources of energy in nature are made useful to people.

Merriam-Webster Online Dictionary

 Technology - application of scientific knowledge to the practical aims of human life or, as it is sometimes phrased, to the change and manipulation of the human environment

.... in this context

 technology as "the ways in which humans do and make things with materials and energy"

Manahan (1999)

 <u>economic activity</u> as "a process of transforming materials and energy"

Turner et al. (1994)

.... technology

- The term "technology" : [technical] systems versus material and energy flows - photosynthesis analogy
- Technology as hard and soft means of transfer, transport and transformation of materials and energy in a given economy

.... in this context - analogy

5/13/2004

 the action or an instance of "determining the importance, size, or value of....."

....Impacts

Impacts

- 1. Economic
- 2. Legal
- 3. Environment al
- 4. Institutional
- 5. Social
- 6. Political
- 7. Technologica

Economic
 Sociological
 Legal
 Environmental
 Technical

.....in this context

- New world order since OTA- Sustainability
- TA discussions vis-à-vis sustainable development
- Impacts :
 - ecological
 - economic
 - social
- need for metrics (e.g. WRI)

TA - tools

- Different tools, different levels, different areas
- Henriksen (1997) : 61 TA tools
 - economic analysis (11)
 - technical performance assessment (9)
 - market analysis (4)
 - decision analysis (9)
 - systems engineering/systems analysis (7)
 - technological forecasting (6)
 - information monitoring (4)
 - risk assessment (5)
 - externalities/impact analysis (6)

In this context

- tools for assessing
 - ecological
 - economic
 - social impacts

Combination

- not to make the tools one
- to enable the tools "to act together"

• a basic conceptual structure (as of ideas)

Synthesis: title and subtitle

 tools "acting together" in a common "conceptual structure" for "determining the importance, size, or value" of ecological, economic and social impacts of "doing and making things with materials and energy"

Ecological - MFA/SFA and LCA

- MFA/SFA : from biology, ecology, sociology, cultural anthropology, and social geography (Fischer-Kowalski, 1997)
- *Metabolism of the Anthroposphere*

(Baccini and Brunner, 1991)

- three phases of carrying out MFA/SFA:
 - goal and system definition
 - inventory and modelling
 - interpretation

(Udo de Haes et al., 1997)

.....ecological - LCA

- LCA as a model and as a procedure
- as a model:
 - environmental impacts of a product, service or activity throughout its entire life cycle
- as a procedure:
 - goal definition and scoping
 - inventory analysis
 - impact assessment
 - interpretation

Retrospective LCA and Prospective LCA

Economic -LCC

- LCC = Internal and External
- Internal = conventional + less tangible costs
- Conventional= capital + operating costs
- Less tangible = waste handling + environmental permitting + . . .
- External = emissions and resource use/ environmental and human health effects

Social - SIA

- Still at the level of development
- Difficulty due to the connection of social impact to project level assessment and corporate/firm level responsibility (e.g. CSR)
- Basis: theories and practices of SIA
- Starting-point Vanclay's (2003) eight "changes to" people's

(Vanclay, 2003)

.....social - SIA

Social impacts as "changes to" people's

- 1. way of life how live, work, play
- 2. culture shared beliefs, customs, values
- 3. community stability, cohesion, services and facility
- 4. political systems participation in decisions
- 5. environment availability, quality and access to
- 6. health and wellbeing WHO's definition
- 7. personal and property rights human rights
- 8. fears and aspirations perception of safety, future

Cross-fertilization of tools and concepts

An ideal technology assessment tool with sustainability if focus (TSA)

5/13/2004

Parameters for "acting together"

- About the tools
 - quantitative wherever possible
 - established, standardized
- About the methodology
 - recognition and consideration to different levels
 - conceptual level common conceptual frame of reference
 - tactical level- specific data collection and calculation method
 - "clear scientific and methodological status"
 - "paradigmatic and cumulative"
 - both social and natural sciences

...parameters for "acting together"

- About the implementation of the combination
 - systematic
 - coherent body of ideas or principles marked by thoroughness and regularity
 - even-handedness
 - considerable magnitude of integration
 - "sound co-ordination, integration and overall balance" between the ecological, economic, and social aspects
 - credibility
 - free from assessor's own judgment and intuition

 Platform for methodology development and harmonization

... parameters for "acting together"

- About the result
 - manageable result presentation
 - enhanced credibility and reproducibility
 - applicability, usefulness

Implementation platform – ORWARE

- Computer-based model tool, ORWARE
 - composed of sub-models for ecological, economic and social aspect of technology units
- MATLAB/SIMULINK with result presentation in MS Excel
- purely quantitative data and quantitative data based on qualitative info
 - both as a raw input data and as background information for final analysis of results
- three parts
 - data input
 - data processing
 - result presentation parts

Submodels in ORWARE

5/13/2004

Comparison of systems

5/13/2004

Conceptual model of the total system

Final remarks - opportunities

- modular feature : flexibility, transparency and simplicity
- more even-handed assessment
- compensate for weaknesses in a tool
- comprehensive and systematic at the same time
 - avoids problem shifting
 - from area to area
 - from one part of the life cycle to another
 - dimension to dimension

.....opportunities

- locating and determining weak points along chain of technologies
- structure scenario construction
- data handling and data storage
- result presentation
- when associated with ongoing R&D work-
 - provides insight regarding where the next invention or R&D should focus

Challenges

- difficulty in comparing established and nonexiting/ non commercial technologies
 - performance
 - unavailability of data or poor quality
- scale problems between laboratory scale and commercial scale
- detail-level of modeling
- handling of data quality/uncertainty
- development of weighting of different categories within the ecological and social dimension

Result presentation

Result presentation

