Linking environmental effects to health impacts – a computer modelling approach

- J Mindell [1] & R Barrowcliffe [2]
- 1. Imperial College London
- 2. Environmental Resources Management Ltd

EIA & human health

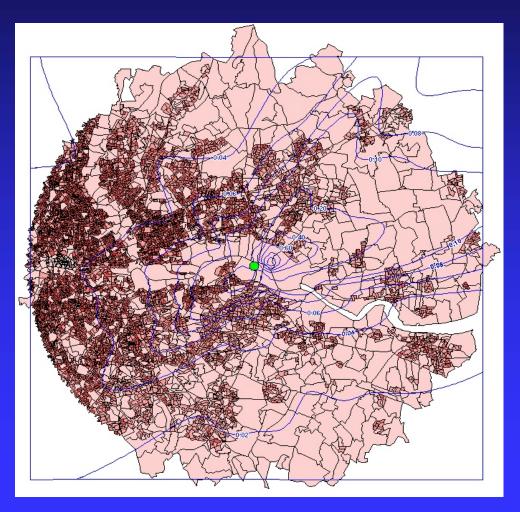
- A statutory European Union requirement for EIA to consider impacts on human health
- Seldom done in practice
- We describe a computer modelling approach to quantifying potential health impacts from predicted air quality impacts of a proposed waste incinerator in England

Aim

To model the likely health impacts of exposure to criterion air pollutants from a proposed energy-from-waste plant in England

Is there a causal relationship?

Health Impact Change in population pollution exposure


Estimate of health effect of unit change in pollutant level

Baseline event rate

Prediction of environmental effects

- Estimates of emissions of criterion air pollutants from the incinerator
- Ground level concentrations predicted using the ADMS air dispersion model
- Contour maps of additional annual average pollution exposure from the proposed plant and entered into a geographical information system (GIS)
- Enumeration district -level population data also entered into GIS (Total population = 0.5 million)

Population Data and Additional Pollution Estimates

Calculating the health impacts

Where

- $\bullet \delta E$ = Change in number of outcome events
- $\phi \beta$ = Exposure-response coefficient
- ♦ δCP = Change in ambient concentration * Population
- ightharpoonup E = Background rate of outcome events

Is there a causal relationship?

Health Impact Change in population pollution exposure

Estimate of health effect of unit change in pollutant level

Baseline event rate

Data Sources

- Literature search: Medline, Embase,Biological Abstracts, HELMIS
- Literature reviews on the effects of :
 - ◆ Particulate matter
 - nitrogen dioxide
 - sulphur dioxide

Effects of particulate matter (epidemiological studies)

Strong evidence for a causal effect of acute PM₁₀

Non-traumatic deaths

Moderate evidence for a causal effect of acute PM₁₀

- Respiratory deaths
- Emergency hospital admissions for respiratory and circulatory diseases in adults
- Emergency hospital admissions and emergency attendances for asthma in children and younger adults

Moderate evidence for causal effect of longterm PM₁₀

Non-traumatic deaths

Estimates of some health outcomes in UK of a 10 μg/m³ increase in PM₁₀

- 0.5% increase in non-traumatic mortality
 Combined NMMAPS and APHEA (Anderson 2002)
- 0.8% increase in hospital admissions for respiratory diseases
 WHO (WHO 2000)

Sensitivity Analyses

e.g. Change in all-cause mortality per 10µg/m³ increase in PM₁₀

Long	don	0.3%

W Europe	(APHEA)	0.4%
----------	---------	------

International	(WHO)	0.7%
---------------	-------	------

Change in Is there a causal population relationship? pollution exposure Health **Impact** Estimate of health effect of Baseline event rate unit change in pollutant level

Data Sources

- ONS mortality statistics 1998 2001
 - ◆ Non-traumatic deaths: 8.126/1,000 pop
- Hospital episode data 1998 2001
 - ♦ Respiratory admissions: 7.411/1,000 pop

Effect of an Individual Pollutant

Exposure-response coefficient

X

Change in population ambient annual pollution exposure

X

Rate of outcome events

No. of deaths brought forward per annum, from PM_{10}

Cause of death	Age group	No. of deaths pa
Total non-traumatic	All	0.030
Respiratory	All	0.013
COPD+ asthma	≥65	0.0078

No. of extra or earlier admissions per year, from PM_{10} exposure

Disease	Age Group	No. pa
Respiratory	All	0.044
	≥65	0.0104
Asthma	0-14	0.0027
	15-64	0.0055
Circulatory	0-64	0.029
	≥65	0.021
Ischaemic heart	0-64	0.011
disease	<i>≥</i> 65	0.011

Discussion (1)

- It is possible to quantify the impact on some health outcomes of exposure to some additional pollutant concentrations, caused by a new point source.
- But:
 - How certain are these estimates?
 - How meaningful are they?
 - Do they inform planning decisions?

Discussion (2)

- We believe that:
 - The estimates are a useful order of magnitude guide to some health impacts;
 - The analysis provides useful contextual information for decision makers;
 - The results require careful presentation for the public, any additional effects are unwelcome and unacceptable.

Acknowledgments

 Dr Michael Joffe, Imperial College London

The waste company that funded us to develop the method

Numbers affected

Severity of disease

and of numbers affected Knowledge - of effects