
Northern Wood Preservers Site Sediment Remediation: EA Follow-up Program

Rob Dobos and Roger Santiago Environment Canada –Ontario Region

Presentation Outline

- Purpose:
 - To use the Northern Wood Preservers Site Sediment Remediation project as a case study of EA follow-up
 - Focus will be on how follow-up monitoring was used to change implementation of project
- Project description and EA process
- Follow-up monitoring requirements
- Results and outcomes of follow-up
- Future steps
- Summary /conclusions

Thunder Bay Harbour, Ontario

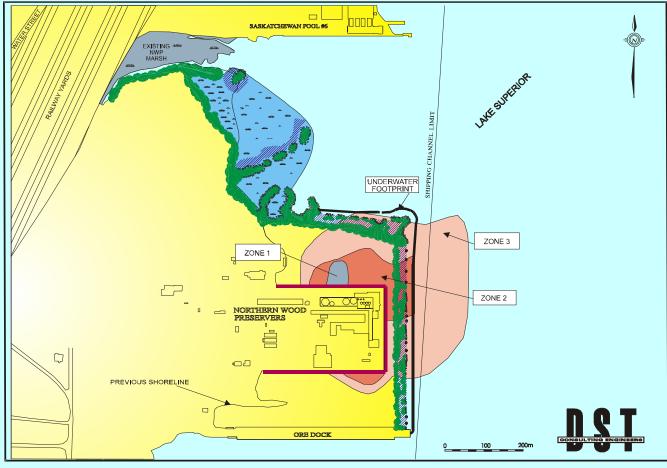
IAIA04 Vancouver, April 28, 2004

Northern Wood Preservers Site Sediment Remediation

- NOWPARC (Northern Wood Preservers Alternative Remediation Concept)
- Project supported by Public Advisory Committee
- Project Funded by:
- Environment Canada
- Ontario Ministry of the Environment
- Abitibi Consolidated
- Canadian National Railway Company
- Northern Wood Preservers Inc.

Project Overview

- Site studied since the late 1970s
- Pools of creosote identified around NWP's property
- Average total PAHs concentration near 10,000 ppm with peaks over 50,000 ppm
- Volume of sediment causing acute lethality to benthos 11,000 m³
- Cleanup criteria established at 260 ppm total PAHs (CCME industrial fill quality criteria)
- Goal: Re-use of treated sediment to create new industrial land


Northern Wood Preservers Site Plan

Project Components

- Confinement of work site with a rock-filled berm
- Removal of creosote contaminated sediment using a Cable Arm Bucket
- Treatment of removed sediment using solid phase bioremediation - Contingency Thermal Treatment
- Isolation of source with clay barrier -Contingency
 Waterloo Sheet Pile Wall
- Containment of work site using clean fill
- Fish and wildlife habitat restoration
- Collection and treatment of groundwater

NOWPARC Site Plan

IAIA04 Vancouver, April 28, 2004

EA Process

- Comprehensive Study under CEAA
- Environment Canada lead RA due to federal funding
- Fisheries & Oceans Canada RA due to regulatory approvals: Fisheries Act, NWPA
- Comp study completed Feb 1997
- Minister's approval May 1997 requirement for RAs to develop and implement EA follow-up program

EA Follow-up Program

Components identified in CSR:

- Surface water quality
- Ground water quality
- New aquatic and terrestrial habitats
- Social –noise, odour, health & safety
- Malfunctions & accidents
- Cumulative effects
- Effectiveness of sediment treatment

- Surface Water Quality:
- Q: Will remediation activities impair surface water quality?
- Monitoring water quality during berm construction, site isolation, filling and sediment removal
- Result: no adverse effects observed

NWP Site Berm Construction Silt Curtain

Ground Water Quality:

- Q: Are barrier and fill effective in stopping movement of contaminants?
- Monitor effectiveness of clay liner installation
- Long term ground water monitoring Result: clay liner not creating complete seal
- contingency measure using Waterloo steel pile wall installed
- Pizometers installed throughout fill area for ground water quality and flow

NWP Site Clay Isolation Barrier

- Isolation of source with an environmental clay barrier
- Clean fill placed between clay barrier and rockfill berm
- Over 114,000 tonnes of clay placed over 600m at a cost of \$500,000 CND

NWP Site - Waterloo Sheet Pile Wall

- Approximately 6000 m² of sheet pile placed along 560 m at a total cost of \$1.9 M CND
- Wells installed throughout filled area for long term monitoring of ground water and removal of creosote

Sediment Treatment Effectiveness:

- Q: Is the selected sediment treatment technology achieving cleanup targets?
- Monitor effectiveness of biological treatment process
- Result: bioremediation process not meeting cleanup criteria due to higher than expected contaminant concentrations
- Off-site high temp thermal desorption treatment process implemented –treatment successful

Bioremediation of Contaminated Sediment

- Following dewatering, sediment is dumped into mixing shed through a 6 inch screen
- Daramend[™] (nutrient source) is added and tilled into sediment

Thermal Desorption Treatment

 Sediment shipped by rail in sealed railcars to Princeton, British Columbia for thermal treatment

Treated Sediment Reuse in Mine Reclamation

• Sediment treated by thermal process is being used as cover material at a mine site reclamation project outside Vancouver

Aquatic Habitat Creation:

- Q: Will shoreline treatments provide no net loss of productive fish habitat?
- Monitor fish populations following creation of habitat

Result: aquatic habitat creation recently completed and monitoring protocol just developed –to be implemented over 10 years

NWP Site Aquatic Habitat Creation

Terrestrial Habitat Creation:

- Q: Will project activities adversely affect wildlife, and will new upland habitat provide wildlife benefits?
- Document impacts on wildlife during construction; assess wildlife use of new upland areas and vegetated buffer

Result: no impacts on wildlife observed during construction; 30 m wide buffer of native trees planted along shoreline –monitoring for successful take of trees

NWP Site Terrestrial Habitat Creation

Social Impacts:

- Q: Does noise and odour from site exceed regulatory levels? Will adjacent uses be disrupted?
- Monitor air quality during sediment removal
- Advise local business and residents of activities
 Result: air quality within acceptable guidelines
- site activities had to accommodate NWP operations
- noise complaints at quarry site for rock fill

Local Quarry for Rock Fill

• Quarry access road relocated to avoid neighbouring houses

Health & Safety:

- Q: Are site workers properly trained & equipped, and appropriate measures implemented?
- Project, NPW and contractors had inspectors on site to ensure H&S requirements being met

Result: problems with one contractor

- Not wearing proper equipment or using appropriate equipment
- Ministry of Labour called in to enforce situation

Worker Health & Safety During Sediment Removal

Accidents & Malfunctions:

- Q: If an accident or malfunction occurs, are effects minimized or acceptable?
- Identify nature and extent of effects through appropriate monitoring programs (water and air quality during construction)

Result: a few minor instances –silt curtain failure and blow up; bulldozer slipping into water –effects were minor and localized, situation quickly addressed

NWP Berm Construction Silt Curtain Failure

Cumulative Effects:

- Q: Are cumulative effects considered in the monitoring program?
- Ensure that effects other than direct project effects are monitored

Result: Adjacent industry (Canada Malting) claimed project causing impairment to intake water; water quality monitoring design was able to show that NWP site not source of contaminants

Future Steps

- Ongoing monitoring of ground water
- Monitoring of aquatic and terrestrial habitat use
- Summary EA follow-up and monitoring report required for project partners
- EC will make report available to public through Public Advisory Committee and on our website

Conclusions

- Condition of EA approval to design and implement follow-up program was met
- Follow-up monitoring during project implementation showed mitigation measures for water & air quality were effective
- Monitoring of clay barrier and sediment treatment resulted in changes in implementation using contingency options

 \rightarrow adaptive management

 Ongoing monitoring for habitat creation (short term) and ground water required (long term)