On the Successful Implementation of Mitigation Measures

Luis E. Sánchez

University of São Paulo - USP

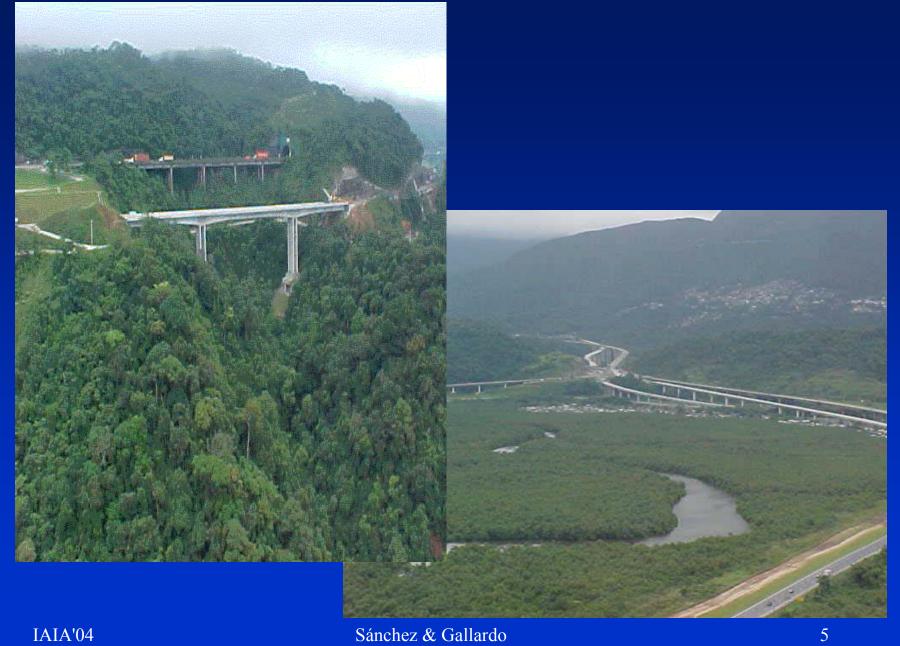
Amarilis L.C.F. Gallardo

Institute for Technological Research - IPT

Issues: effectiveness of EIA

 focus has shifted from accuracy of impact predictions to our ability of effectively preventing environmental degradation

 depends on full implementation of mitigation and other management measures


Case study

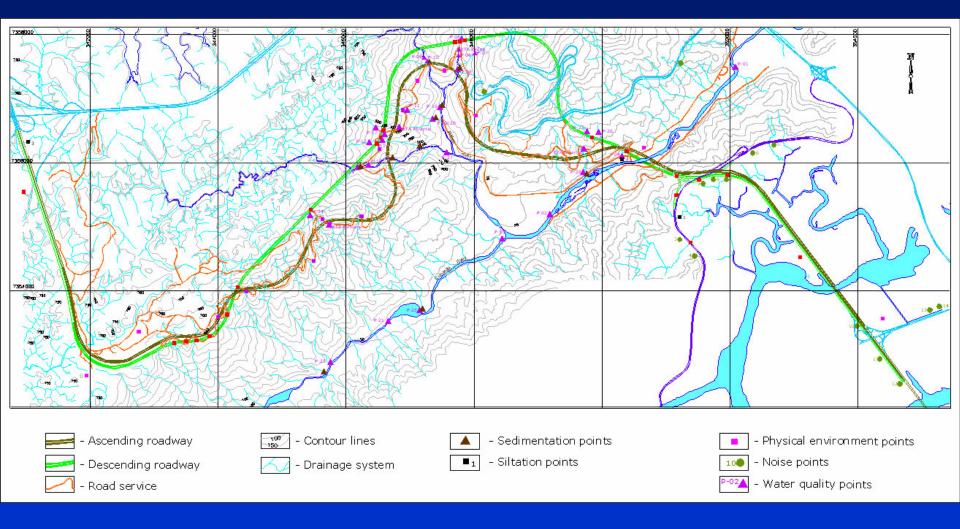
construction of a highway crossing tropical rainforest and steep slopes in São Paulo State, Brazil

Case study: Imigrantes Highway

- previous studies showed that environmental monitoring and follow-up received particular attention due to:
- ✓ high visibility
- ✓ sensitive environment:
 - → State Park
 - → rainforest (biodiversity, endangered species)
 - → water resources for public supply
 - → steep slopes (risks of landslides)

The project

- Construction of a three-lane highway through a State Park in forested steep slopes
- $\sim 17 \text{ km (+4 km)}$
- 3 tunnels 8231m
- 9 viaducts 4270 m
- cut and fill 4623 m
- Construction took place between Sep 1998 and Dec 2002


Monitoring provisions

- Physical environment:
 conducted through field inspections
 - ✓ slope protection, sediment traps
 - ✓ evidence of erosional or instability processes
 - ✓ volume and dimension of landslides

Monitoring provisions

- Water quality: 27 control points
 - 9 upstream/18 downstream
- Noise: 14 control points
- Fauna surveys: around major construction points
- Vegetation loss: actual cut down surface

Monitoring stations

Physical environment

- sediment traps retained eroded soils
- river siltation observed in only one point:
 sediments removed
- only minor landslides (< 100 m³)

no significant impact on physical environment

- Water quality pH
 - out of 1220 water samples, 475 (38,9%)exceeded quality standards for pH (6.5<pH<7.5)
 - these 475 samples 1/3 are located upstream and 2/3 downstream: alcaline results mostly downstream ---- unpredicted impacts of tunneling
 - 4 wastewater treatment plants built

- Water quality turbidity and colour
 - out of 1220 water samples, 17 (1,4%)exceeded quality standards for turbidity (<150 NTU)
 - out of 1220 water samples, 27 (2,2%)
 exceeded quality standards for colour (<200mg Pt/L)

drainage system and sediment traps have been effective in preventing sediment transport

protecting exposed slopes

aggregate stockpile and wastewater treatment plant

- Vegetation loss
 - 40 ha of forest cut down

in accordance with license terms amount 40 times lower than vegetation loss during construction of old highway (1970s) nevertheless, 8 nonconformities for cutting before receiving specific authorization

reducing loss of natural vegetation

• Fauna

- mammal, reptile and bird surveys identified more species than baseline surveys
- 93 running-overs during construction, mostly affecting rodents and serpents
- 111 individuals transferred to other parts

impacts of construction works over fauna have been minor

Reasons for success

- effective follow-up through intense supervision and reporting
- complementary roles played by environmental professionals within government agencies, consultancy and the contractor
- existence of an environmental management system for construction showing "documental proof that all mitigation and preventative measures have been adequately implemented"

Reasons for success

- a combination of internal and external factors led to the successful implementation of mitigation and management measures:
 - ✓ overseeing carried out by government agencies
 - ✓ threats of administrative and judicial measures if unjustified incompliance (case of water pollution) – risks of stopping construction
 - ✓ clear duty of monitoring and reporting
 - **✓** public interest

Lessons

- a management system is a powerful tool to successfully carry on the implementation of mitigation and other management measures
- complex projects built in sensitive environments need a robust follow-up scheme to detect and correct any unpredicted impact
- external control is essential to guarantee the successful implementation of mitigation measures

Previous work

• GALLARDO, A.L.C.F.; SÁNCHEZ, L.E. Environmental follow-up of a road building scheme in a fragile environment. *Environmental Impact Assessment Review* 24:47-58, 2004.