Developing Sustainable Development Indicators for the Electric Utility Industry

Cory Searcy Daryl McCartney Stanislav Karapetrovic University of Alberta

Caroline Piotrowski University of Manitoba

Overview

- Background
- Methodology
- Sustainable Development Indicator (SDI) Design Process
- Examples
- Summary and Conclusions

- Introduction
 - a pressing need to determine how electricity needs can be met in a more sustainable manner
 - driving forces:
 - legislation
 - stakeholder demands
 - continued technological innovation
 - increasing trend towards deregulation
 - business benefits
 - key actions:
 - WBCSD
 - GRI
 - industry associations
 - individual companies

- Introduction
 - underlying challenge: to meet the needs of the present without compromising the ability of future generations to meet their own needs
 - integration of SD practice into existing operations
 - identify future options that meet stakeholder and utility needs
 - the hardest part about SD is actually achieving it
 - must be translated into practical dimensions
 - biggest gap: ongoing requirements to find methods of measuring progress with respect to environmental, economic, and social impacts
 - fundamental to these tasks is the creation and implementation of SD indicators

- Sustainable Development Indicators (SDI)
 - signs, symptoms, trends, or warnings that identify relationships based on defined parameters
 - must provide us with the ability to recognize the presence or absence of SD, or threats to SD in the systems under our stewardship
 - must help us understand the linkages, connections, and interdependencies between our environment, economy, and society
 - while indicators cannot tell us everything, they should tell us enough to make good decisions possible

- SDI in Electric Utility Industry
 - energy issues are a prominent component of indicator efforts at international, national, and local levels
 - few established efforts to develop SDI for utilities
 - previously noted programs
 - in existing programs, three key shortcomings:
 - it is often unclear how the indicators were developed
 - most programs focus primarily on environmental issues
 - aside from producing a report, little guidance is provided on the actual implementation of the indicators

Research Objectives

- 1. To design a process for creating SDI in an electric utility context
- 2. To develop SDI for the transmission system of an electric utility
- 3. To develop an IMS model that incorporates a module on sustainable performance

Phase 1 has been completed:

- extensive consultation with internal expertise at a case utility and relevant external expertise
- face validity test

The project is currently in Phase 2

SDI Design Process

- 1. Conduct needs assessment
- 2. Conduct process planning
- 3. Develop a draft set of SDI
- 4. Test and adjust the indicators
- 5. Implement the indicators
- 6. Review and improve

SDI Design Process

- Key Points:
 - key stakeholders must be involved throughout the entire process
 - employees, investors, customers, governments, suppliers, industry organizations, local communities, NGOs, the general public, other special interest groups
 - the manner in which the indicators are produced is just as important as the indicators themselves
 - standardized sets of indicators serve as useful reference points but the organization should go through the development of the indicators from the first principles

- unique circumstances and organizational learning

STEP 1

Conduct Needs Assessment

- Identify underlying needs that must be addressed by the process
 - forms the basis for the rest of the process
 - key questions:
 - who will use the indicators?
 - how will the indicators be used?
 - what types of indicators are currently available?
 - what are the major gaps in existing info systems?
 - what are some of the key anticipated challenges?

STEP 2 Conduct Process Planning

- Identify process proponent
- Form working group
- Develop purpose and scope
- Develop action plan
- Approve plan

Developing SDI for the Electric Utility Industry

STEP 3 Develop Draft Set of SDI

- Develop conceptual framework
- Identify key issues
- Develop indicator selection criteria
- Develop pool of indicators
- Consolidate pool of indicators
- Develop system of indicators
- Review indicators

Developing SDI for the Electric Utility Industry

STEP 4

Test and Adjust Indicators

- Confirm availability
 of data
- Re-evaluate proposed indicators
- Collect and compile data
- Analyze and interpret data
- Finalize set of working SDI
- Approve indicators

STEP 5 Implement Indicators

- Key considerations:
 - communication with stakeholders
 - linkages to existing initiatives
 - timing of implementation
 - unique org. challenges
- IMS
 - integrated management system with a module on sustainable performance
 - systems approach

STEP 6 Review and Improve

- Ongoing monitoring and assessment is required
 - feedback loops
 - reflects iterative nature of the process
- A system of governance is needed
 - financial resources
 - human resources

Developing SDI for the Electric Utility Industry

TRANSMISSION SYSTEM Example: Key Issues

Environment	Economy	Society
 Vegetation Management Practices 	 Benefits to Customers and Stakeholders 	 Employee and Public Safety
 Public Involvement 	 Cost Issues 	 Equity
 Potential Contamination 	 Governance and Management Issues 	 Community Relations
 Changes to Habitat 	 Risk to Livestock 	• EMF
 Loss of Forest Cover 		 Private Property and Land Uses
 Increased Access 		 Education and Training Aesthetics

VEGETATION MANAGEMENT PRACTICES Example: Pool of Indicators

- Kg Chemicals Used/Electricity Transmitted
- Percent of Right of Way (ROW) Treated with Chemicals
- Ratio of Soil Residual Herbicides
 vs. Non-Residual
- Hectares Contracted with Chemical Treatment vs. Hectares Contracted with Mechanical or Hand Clearing
- Cycle Time for Vegetation
 Management
- ROW Cleared vs. ROW Width
- Hectares of ROW Maintained/Total Hectares of ROW
- Cost per Year of Chemical Treatment vs. Cost per Year of Non-Chemical Treatment
- Hectares Treated Biologically

- Percentage of Total Research Dollars spent on Non-Chemical Vegetation Management Practices per Year
- Hectares/Treatment Practices
- Opportunities for Aboriginals
- Total Area ROW/Electricity Transmitted
- Total Area ROW/Design Capacity of Transmission System
- Minutes of Outages Caused by Trees
- Number of Complaints per Year
- Public Responses to Herbicides
 Announcements
- Hectares of Secondary Land Use

VEGETATION MANAGEMENT PRACTICES Example: Consolidated Indicators

- Minutes of Outages Caused by Vegetation
- Hectares Managed per Total Land Base by Practice
- Cycle Time by Method of Vegetation Management
- Percentage of Total Research Dollars Spent on Non-Chemical Vegetation Management Practices per Year
- Public Responses to Herbicide Program
 Announcements

VEGETATION MANAGEMENT PRACTICES Preliminary Example: System of Indicators Required Information

- 1. Costs of Outages
- Minutes of outages caused by vegetation
- Cost of outage per minute
- Cost of outages caused by vegetation
- 2. Costs of Outage Prevention
- Hectares managed per total land base by practice
- Cycle time by method of vegetation management
- Life cycle cost per hectare managed by practice
- Cost of increasing frequency of vegetation mgmt. by practice

Indicator

• Cost of preventing outages by method vs. cost of outages

Summary and Conclusions

- Key Points:
 - there is increasing pressure on electric utilities to conduct their activities in a manner that balances economic, environmental, and social issues
 - many have made a commitment to apply the principles of SD to their operations
 - SD indicators can help measure progress towards
 SD goals
 - guide decisions towards more sustainable development
 - link sustainability issues with other initiatives
 - identify opportunities to improve
 - promote organizational learning
 - enhance transparency in external reporting

Summary and Conclusions

- Key Points:
 - SD indicators remain an emerging discipline and there is a need for sector-specific indicators as well as processes for their creation
- The SDI Design Process:
 - six-step process to create indicators at a utility
 - proactive, flexible, and transparent approach to developing and implementing indicators
- Ongoing Research:
 - process is part of an ongoing research program
 - currently developing indicators for the transmission system of a major Canadian utility