

Application of the Hydrological Simulation Program FORTRAN (HSPF) Model to Two Large Scale Environmental Impact Assessments in Northeastern Alberta, Canada

Presented to 24th Annual Conference of the IAIA 28 April 2004

Nathan Schmidt, Ph.D., P.Eng. Anil Beersing, Ph.D., P.Eng.

Femi Ade, Ph.D., P.Eng. Getu Biftu, Ph.D., P.Eng.

1. Introduction

Introduction

- Project Overview
- Model Selection
- Model Calibration
- Model Results
- External Review
- Regulatory Decisions
- > Conclusion

In 2003, EIA for two large open-pit oil sand mines in northeast Alberta were submitted

- Hydrological modeling was used for baseline characterization and impact assessment
- Regulatory review was by a joint federal-provincial panel
- The modeling was intensively reviewed during regulatory hearings
- External review and regulatory decisions accepted model use and results

2. Project Overview

- Introduction
- Project Overview
- Model Selection
- Model Calibration
- Model Results
- External Review
- Regulatory Decisions
- Conclusion

Note high degree of existing and planned development on the Athabasca River north of Fort McMurray

2. Project Overview

- Project Overview
- Model Selection
- Model Calibration
- Model Results
- External Review
- Regulatory Decisions
- > Conclusion

- Open-pit oil sands mine development includes stream diversions, closed-circuiting of operational mine areas and changes to reclamation landscape and drainage
- Canadian Natural Resources Ltd. Horizon Project:
 - Production: 270,000 bbl/day bitumen
 - Mine operation: 2007 to 2044
 - Disturbed area: 173 km²
- Shell Canada Jackpine Mine Phase I:
 - Production: 200,000 bbl/day bitumen
 - Mine operation: 2010 to 2032
 - Disturbed area: 77 km²

3. Model Selection

- Introduction
- Project Overview
- Model Selection
- Model Calibration
- Model Results
- External Review
- Regulatory Decisions
- > Conclusion

Model selection depends on its intended use!

Objectives:

- Characterize baseline hydrologic regime:
 - Flood flows (stream geomorphology)
 - Seasonal mean flows (fisheries and water quality)
 - Low flows (fisheries and water quality)
- Predict changes due to mine operations and closure
- Water quality modeling capability?

Challenges:

- Sparsity of data:
 - Geographical
 - Temporal
- Cold region with muskeg terrain
- Variable surficial geology

3. Model Selection

- Introduction
- Project Overview
- Model Selection
- Model Calibration
- Model Results
- External Review
- Regulatory Decisions
- > Conclusion

Solution:

- A physically-based model will allow assessment of changes to drainage areas and terrain
- A model that simulates rainfall and snowmelt runoff
- A continuous simulation model will generate a flow series that can be calibrated to the observed series
- Water quality modeling capability preferred

Selection:

- USEPA recommends HSPF as "the most accurate and appropriate tool available for the continuous simulation of hydrology and water quality in watersheds"
- Other physically-based, continuous simulation models not selected due to high spatial data requirements or lack of support/experience

4. Model Calibration

- Introduction
- Project Overview
- Model Selection
- Model Calibration
- Model Results
- External Review
- Regulatory Decisions
- > Conclusion

Calibration Strategy:

- Use long-term climate data for Fort McMurray, with local adjustments to temperature and precipitation series
- Calibrate based on long-term data from local watersheds (Beaver River, Jackpine Creek, Muskeg River)
- Minimize deviations between hydrograph shape, peak, base length and position
- Reproduce statistics of key parameters
- Validate based on data from local watersheds (Steepbank River, Joslyn Creek)
- Non-concurrent calibration uses longer simulation period than streamflow period of record: driven by regional data

5. Model Results

- Project Overview
- Model Selection
- Model Calibration
- Model Results
- External Review
- Regulatory Decisions
- > Conclusion

	Differences Between Observed and Generated Flow Statistics								
	Calibration								
	Mean Annual Flow		Mean Annual Flood		Mean Open-Water Flow		Mean Winter Flow		
Watershed	D (%)	D(abs)	D (%)	D (abs)	D (%)	D (abs)	D (%)	D (abs)	
Beaver R.	0.0	0.0	1.9	0.19	-2.5	-0.02	14.3	0.01	
Jackpine Ck.	0.0	0.0	2.8	0.22	-3.1	-0.05	25.0	0.02	
Muskeg R.	0.0	0.0	11.5	2.24	7.1	0.39	-6.8	-0.03	
Mean	0.0	100	5.4			1 apres	10.8	alena	
	Validation								
Steepbank R.	-0.4	0.02	2.6	0.97	-3.2	-0.23	16.4	0.10	
Joslyn Ck.	0.0	0.0	-14.2	-1.54	6.1	-0.06	50.0	0.02	
Mean	-0.2		-5.8	A	1.5		33.2	allers'	

5. Model Results

Introduction

ProjectOverview

- Model Selection
- Model Calibration

Model Results

- External Review
- Regulatory Decisions
- > Conclusion

_	Obs	erved	Simulated		
Return Period (years)	Discharge (m ³ /s)	95% Confidence Limits	Discharge (m ³ /s)	95% Confidence Limits	
2	24.1	24.1±5.6	24.9	24.9±4.6	
5	40.5	40.5±10.3	42.2	42.2±8.2	
10	52.5	52.5±14.2	53.7	53.7±11.2	
20	61.7	61.7±18.2	64.7	64.7±14.3	
50	75.1	75.1±23.5	78.9	78.9±18.4	
100	89.8	89.8±27.4	89.5	89.5±21.5	

6. External Review

- Project Overview
- Model Selection
- Model Calibration
- Model Results
- External Review
- Regulatory Decisions
- > Conclusion

- Fisheries and Oceans Canada (DFO) retained Dr. Wayne Huber (Oregon State University) for independent review
- CNRL retained Dr. Thian Gan (University of Alberta) for independent expert witness testimony
- > The DFO review asked the following questions:
 - Is HSPF the appropriate assessment tool?
 - Is the database sufficient?
 - Are the assumptions reasonable?
 - > What is the level of uncertainty in predictions?
 - How well was the model validated?
 - > Why a non-concurrent calibration?
- Main point of contention was non-concurrent calibration

. Regulatory Decisions

- Project Overview
- Model Selection
- Model Calibration
- Model Results
- External Review
- Regulatory Decisions
- Conclusion

- Joint Panel decisions for the two projects were released on:
 - > 27 January 2004 (CNRL Horizon Project)
 - 5 February 2004 (Shell Jackpine Mine Phase I)
- Both projects were approved subject to various conditions
- Hydrologic modeling was accepted by the Joint Panel, however additional site-specific climate and hydrology data collection, and future verification or recalibration of the HSPF model, will be required

8. Conclusion

- Introduction
- Project Overview
- Model Selection
- Model Calibration
- Model Results
- External Review
- Regulatory Decision
- Conclusion

- Hydrological modeling may be required for large project baseline characterization and impact assessment
- Results provide input to water quality and fisheries impact assessments: compatibility of hydrological and water quality models is an advantage
- Results will inevitably be used to provide a design basis for project development
- Model selection, calibration and results may be the subject of scrutiny by regulators and stakeholders: Be prepared to defend your work!
- Sparsity of data in this case required:
 - use of regional data
 - calibration to statistics derived from continuous record/simulation
 - use of non-concurrent periods of record for input and calibration data