Addressing Climate Change and its Uncertainties in Impact Assessments

> Philip H. Byer, University of Toronto Julian Scott Yeomans, York University

> > IAIA'04, Vancouver April 28, 2004

Based on research report for R&D program of Canadian Environmental Assessment Agency

Planning for climate change

- At strategic level
- At project level:
 - Means to help adapt to climate change through design of project
 - Means to mitigate climate change through decision on project (choice of alternative)

Projects and climate change

- Effects of project on climate through GHG emissions
 - Directly (fossil fuel plants, hydroelectric project)
 - Indirectly (new highway, transit line)
- Effects of climate change on project
- Effects of climate change on impacts from project

Effects of climate change on project

- Streamflow ----> Hydroelectric plant
- Water levels ----> Marina
- Permafrost ----> Pipeline
- Rainfall ----> Stormwater collection system

Effects on impacts from project

- Quarry ----> Groundwater
- Dam ----> Fisheries ----> Food supply
- Irrigation Project ----> Agricultural Production ----> Jobs ----> Local Economy

Uncertainties

- Effects of GHGs emissions on global climate
- Effects on regional climate
- Effects on environment

Research project and presentation

- Methods for addressing uncertainties with illustrative example
- Methods for communicating the uncertainties
- Implications for development of guidelines

Methods to address uncertainties

- Scenario analysis
- Probabilistic analysis
- Sensitivity analysis
- Combinations of above

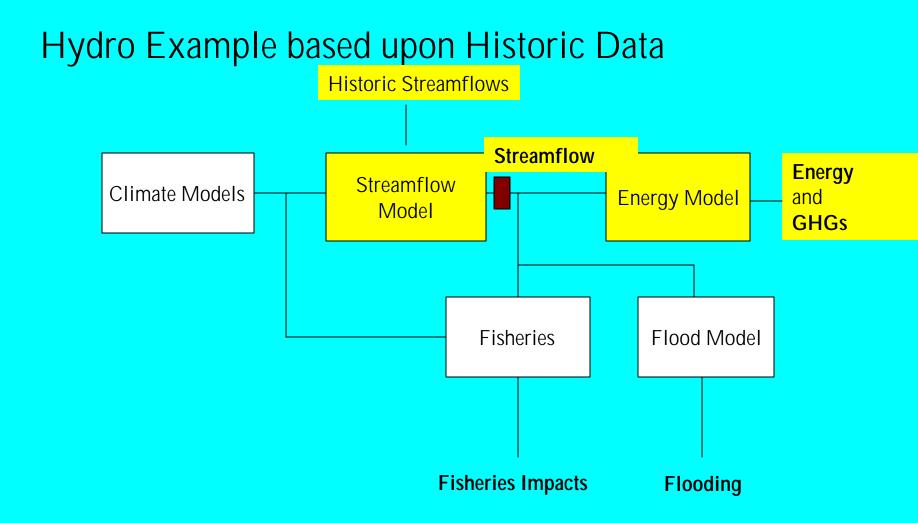
Scenario analysis

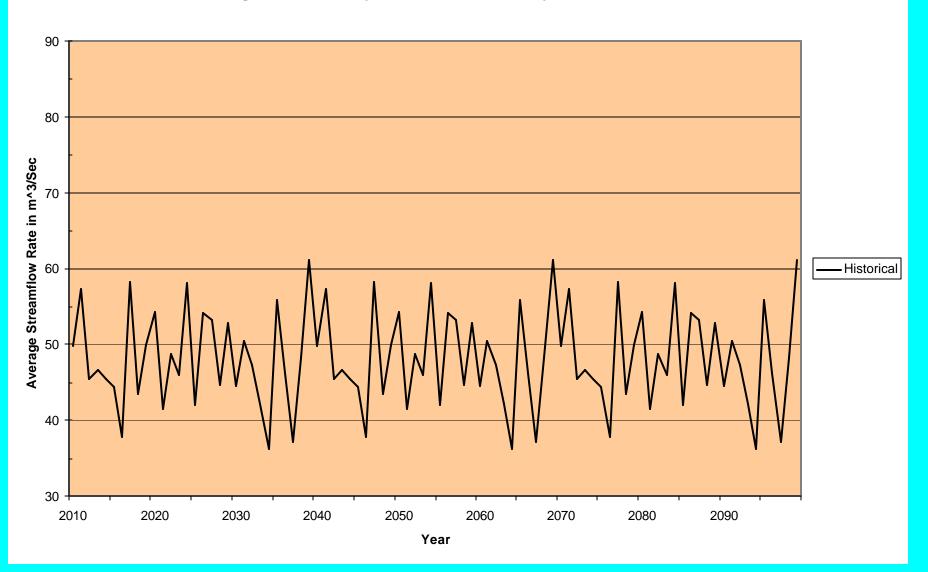
- Scenarios sets of "futures"
- Developed by IPCC and other groups
- Use range of scenarios

Probabilistic analysis

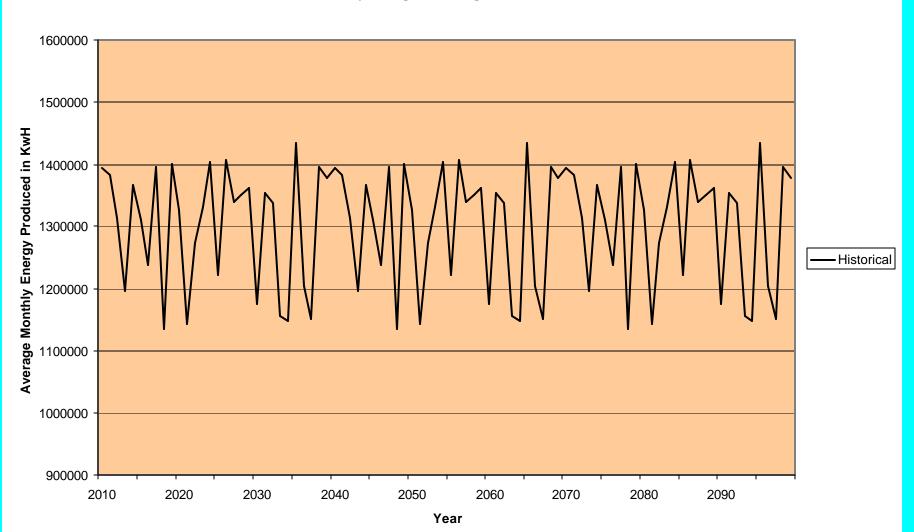
- Scenarios do not address likelihoods
- Estimate probabilities of outcomes (impacts) given probabilities of inputs
- Monte Carlo (stochastic) simulation

Sensitivity analysis

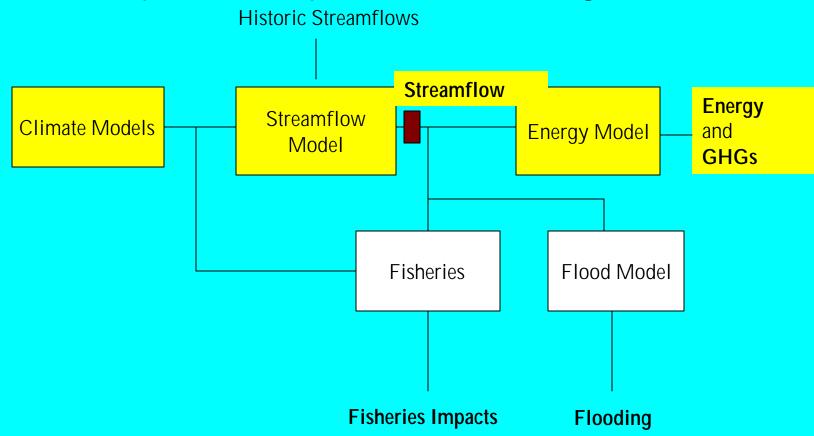

Asks "what if" questions:


- 1. If parameter x changes by amount y, what would be the effect?
- 2. What change in parameter x would cause a certain level of impact?

Use these results to judge whether and how climate change may be significant

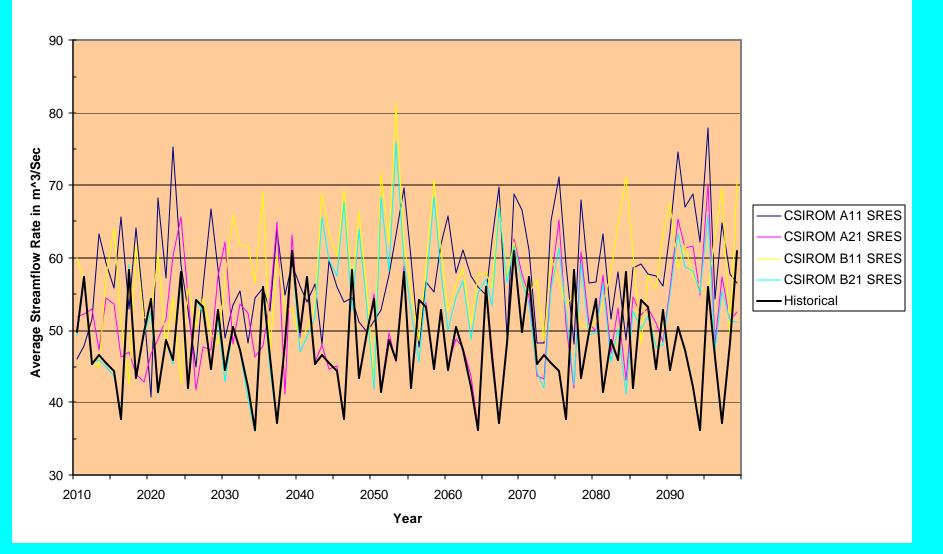

Hypothetical example

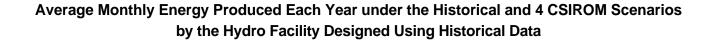
- Based on real case
- Proposed hydroelectric project in Ontario
- Climate change will affect streamflows

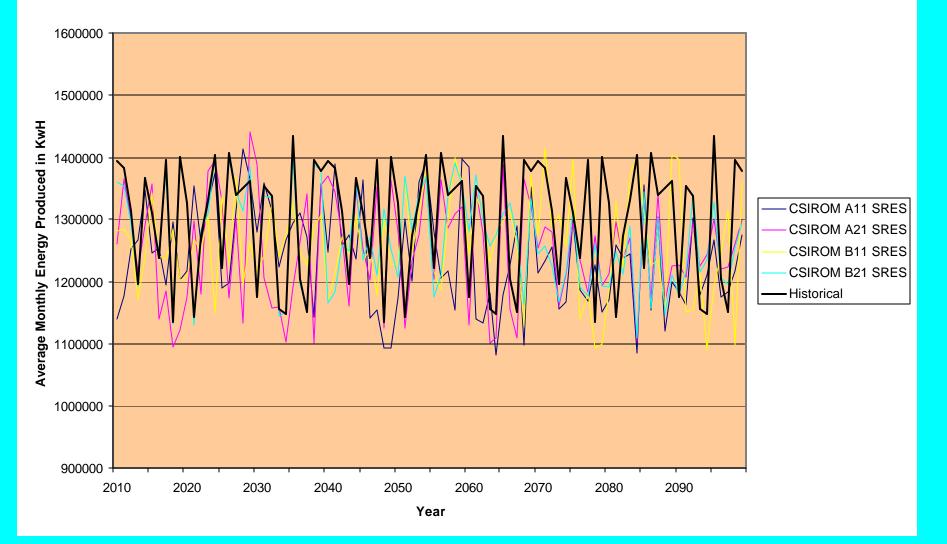


Average Rate of Monthly Streamflow under a Projection of Historical Data

Average Monthly Energy Produced Each Year under the Historical Scenario by the Hydro Facility Designed Using Historical Data

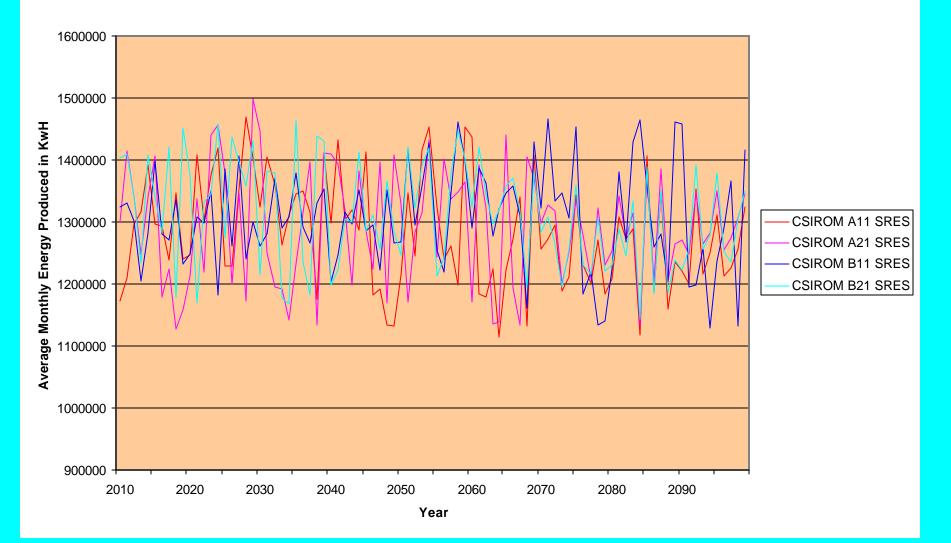

Hydro Example based upon Climate Change Data

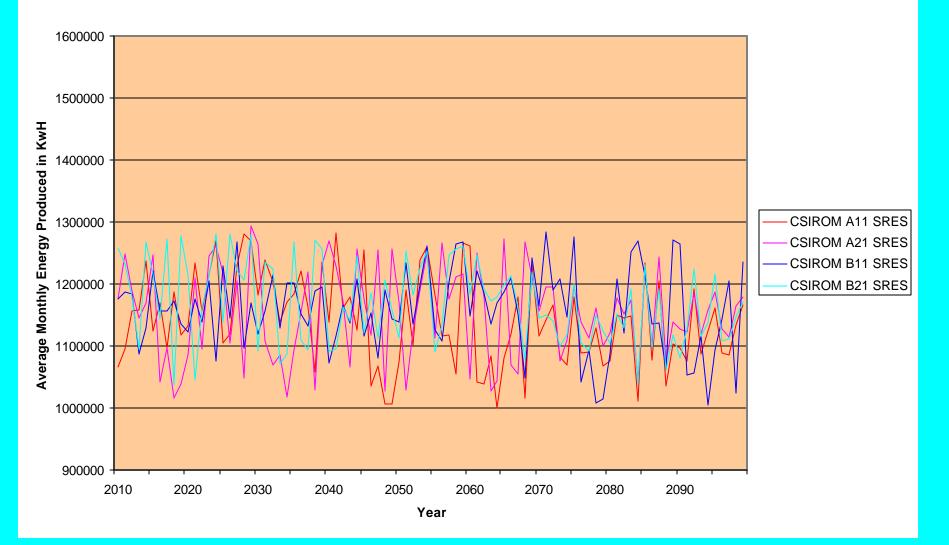



Scenario analysis: streamflows and energy

- Canadian Climate Impacts Scenarios
- Projection of HISTORICAL data into the period 2010-2099
- Capacity of facility based on historical data

Average Rate of Monthly Streamflow under a Projection of Historical Data and Several CSIROM Scenarios

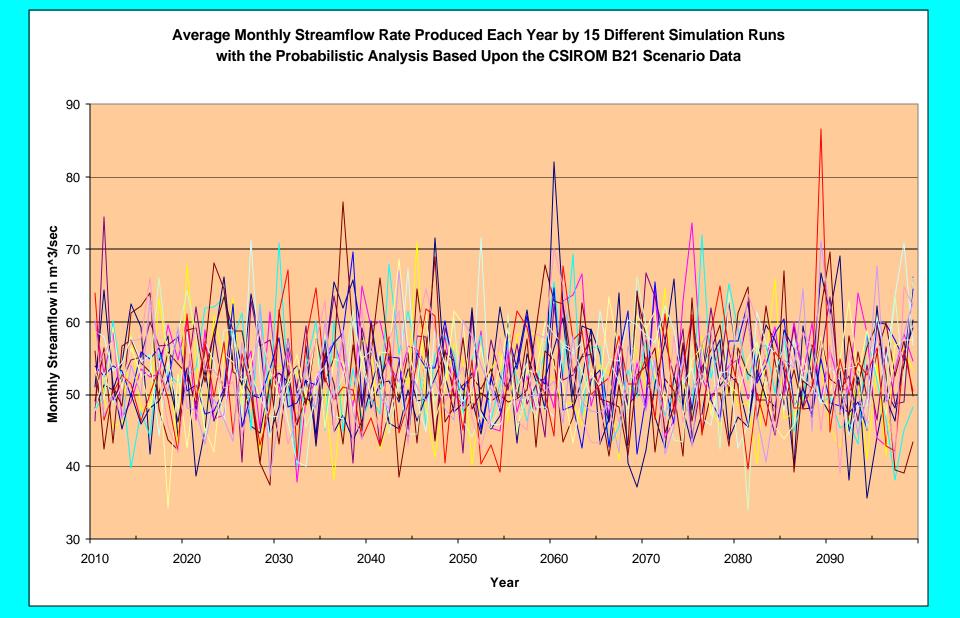


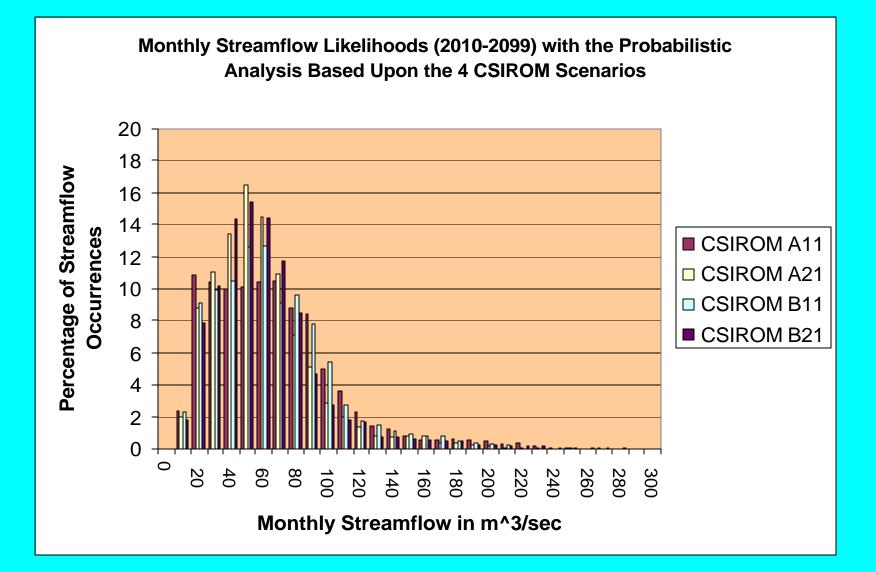


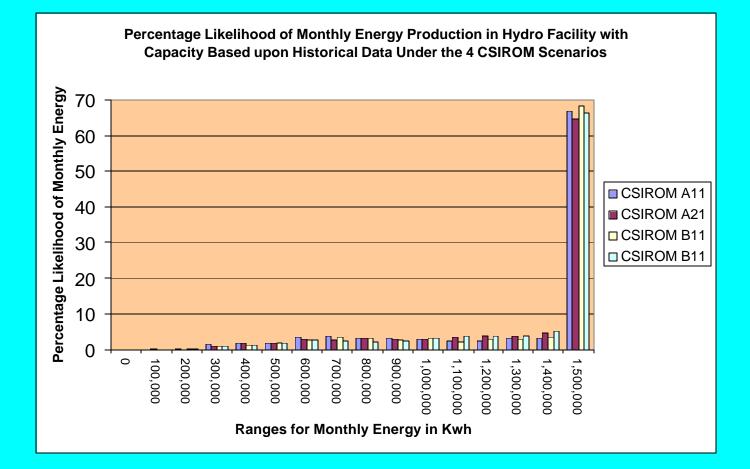
Expected Monthly Energy Production & GHG Reductions 2010-2099								
	Facility Capacity Based Upon Historical Data							
	Average Monthly	Average Monthly Annual Reduction in GHG						
Scenario	Energy in Kwh	Emissions in Tonnes CO2						
Historical	1,301,307	14,054						
CSIROM A11	1,239,742	13,389						
CSIROM A21	1,250,407	13,504						
CSIROM B11	1,261,209	13,621						
CSIROM B21	1,268,823	13,703						

Average Monthly Energy Produced Each Year under 4 CSIROM Scenarios by the Hydro Facility Designed Using Data from CSIROM B11 (the Scenario with the Highest Energy Output)

Average Monthly Energy Produced Each Year under 4 CSIROM Scenarios by the Hydro Facility Designed Using Data from CSIROM B21 (the Scenario with the Lowest Energy Output)

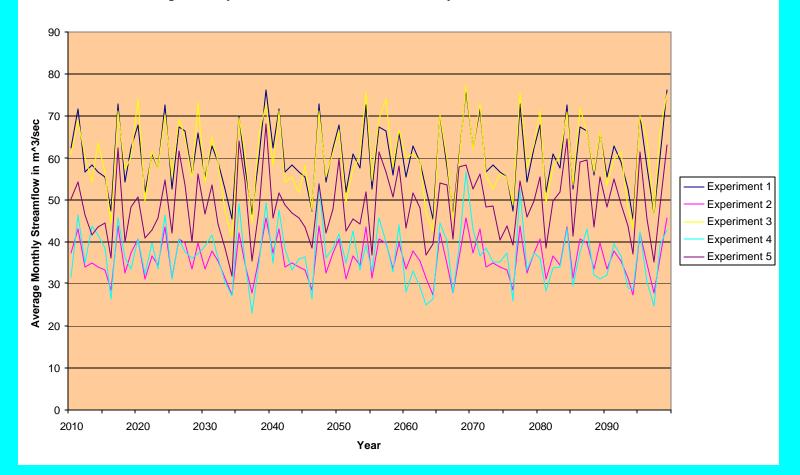



Expected Monthly Energy Production in Kwh for 2010-2099								
	Facility Capacity Design Based Upon Data From:							
	CSIROM B21	CSIROM B21 CSIROM B11						
Scenario	Scenario	Scenario						
Historical	1,194,325	1,344,701						
CSIROM A11	1,140,190	1,282,184						
CSIROM A21	1,152,737	1,291,820						
CSIROM B11	1,158,754	1,305,290						
CSIROM B21	1,168,313	1,311,126						

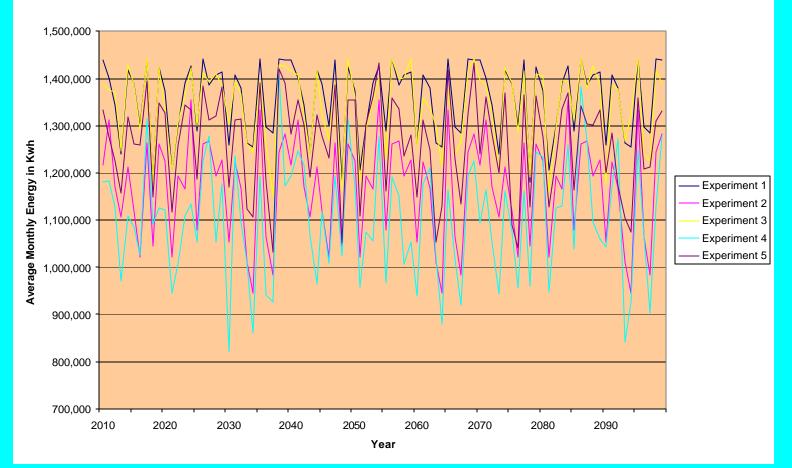

Expected Annual Reduction in GHG Emissions in tonnes of CO2								
	Facility Capacity Design Based Upon Data From:							
	CSIROM B21	CSIROM B21 CSIROM B11						
Scenario	Scenario	Scenario						
Historical	12,899	14,523						
CSIROM A11	12,314	13,848						
CSIROM A21	12,450	13,952						
CSIROM B11	12,515	14,097						
CSIROM B21	12,618	14,160						

Probabilistic analysis

• Streamflows simulated using scenarios



PROBABILISTIC OUTPUTS WITH CAPACITY BASED ON HISTORICAL DATA							
	Experiment						
	Historical	Historical CSIROM A11 CSIROM A21 CSIROM B11 CSIROM B21					
Mean Average Monthly Flow	48	58	51	57	53		
Min Average Monthly Flow	9	2	2	2	5		
Max Average Monthly Flow	108	294	290	276	291		
Mean Average Monthly Energy	1,302,89 5	1,240,236	1,251,745	1,261,884	1,269,461		
Min Average Monthly Energy	322,621	80,382	82,103	90,920	85,401		
Max Average Monthly Energy	1,441,14 5	1,441,145	1,441,145	1,441,145	1,441,145		
Mean Annual GHG Reduction	14,071 13,395 13,519 13,628 13,710						


Sensitivity analysis

SENSITIVITY ANALYSIS EXPERIMENTS PERFORMED

Experiment	Change to Mean Historic Flow Rate	Change to Standard Deviation of Historic Flow Rate
Experiment 1	15%	0%
Experiment 2	-15%	0%
Experiment 3	15%	25%
Experiment 4	-15%	25%
Experiment 5	0%	25%

Average Monthly Streamflows for 5 Variations on Projections of Historical Flow Rate Data

Average Monthly Energy Produced for 5 Variations on Projections of Historical Flow Rate Data

SENSITIVITY OF HISTORICAL VALUES TO 5 CHANGES IN HISTORICAL STREAMFLOW RATES						
	Historical	Experiment 1	Experiment 2	Experiment 3	Experiment 4	Experiment 5
Change to Mean	0%	15%	-15%	15%	-15%	0%
Change to STD	0%	0%	0%	25%	25%	25%
Monthly Energy						
(Kwh)	1,301,307	1,355,618	1,167,060	1,341,103	1,101,460	1,254,385
Annual GHG Reduction						
(tonnes CO2)	14,054	14,641	12,604	14,484	11,896	13,547
Movinum Monthly Flow						
Maximum Monthly Flow (m^3/sec)	108	135	81	146	137	143

Flooding

- 1. Assess change in probability of flooding
- 2. Assess change in flood damages

Current Condition (based on daily streamflows):

- Low level of damage at 200-250 m3/s
 - Probability = 0.08 per year
- Medium level of damage at >250 m3/s
 - Probability = 0.02 per year

Flooding: sensitivity analysis

Annual Probability of Damage

<u>Damage</u>	With Increase in S.D. by: Historic 15% 25% 22% 12%				
Low	0.08	0.14	0.22	0.20	0.08
Medium	0.02	0.05	0.11	0.08	0.04

Flooding: scenario and probabilistic analyses

Probabilities of Occurrences for Daily Streamflows, 2010-2099

Streamflow (m^3/sec)	A11C	A21C	B11C	B21	Historic
200 to 210	0.042	0.009	0.026	0.017	0.025
210 to 220	0.033	0.010	0.020	0.017	0.021
220 to 230	0.025	0.004	0.010	0.013	0.015
230 to 240	0.017	0.004	0.010	0.011	0.013
240 to 250	<u>0.018</u>	0.009	0.000	0.011	0.006
	0.135	0.036	0.056	0.069	0.08
250 to 260	0.013	0.002	0.006	0.007	0.005
260 to 270	0.014	0.002	0.001	0.009	0.006
270 to 280	0.010	0.001	0.001	0.008	0.003
280 to 290	0.012	0.000	0.000	0.002	0.001
>290	<u>0.019</u>	0.002	0.005	0.004	0.005
	0.068	0.007	0.013	0.030	0.020

Fisheries: recreational fishing

Affected by changes in:

- Flows
- Temperature of water

Sensitivity analysis (1): fisheries

Ask Experts About	Streamflow Changes by: -10% + 10%			
Water Temp Changes by: -1.0C	Significant loss of warm water species	Minor loss loss of warm water species		
+1.0C	Significant loss of warm and cold water species	Insignificant effects		

Sensitivity analysis (2): fisheries

Ask expert: What change in streamflow and water temperature would lead to threshold changes in quality of fisheries, e.g. collapse of warm water species?

How would this compare with what might occur with climate change?

Choice of method

Should depend on:

- Quality of the methods/models and data
 - Difficulty (e.g. expertise, data and cost)
 - Quality of information provided
- Importance of the impact studied

Choice of method

	Model and Data Availability				
Importance	Poor	Fair	Excellent		
Low	None	Sensitivity	Sensitivity or Scenario		
Medium	Sensitivity	Scenario	Scenario		
High	Sensitivity	Scenario	Scenario and Probabilistic		

Communicating results to decision makers and stakeholders

Need to clearly communicate:

- **Results** of the analyses
- Information about the degree of belief in the results

Presentation of uncertainties in quantitative results

- Range extreme values

 0.98 to 1.60 Gwh/month
 10,600 to 17,300 tonnes CO2/year
 Annual probability of medium flood damage = 0.02 to
 0.068
- Mean and confidence
 1.27 ± 0.65 Curb/month (0)
 - 1.27 ± 0.65 Gwh/month (90% confidence)
- Full probability distribution
- Thresholds and vulnerability levels

In qualitative results

Range

"Low to medium"

- Central tendency and variation from it "Low with significant possibility of medium"
- Explain thresholds and vulnerabilities "Possible loss of significant game species"
 Need to clearly define terms

Degree of belief/confidence

To assess beliefs in the results, explain:

- Models used
- Data sets employed
- Assumptions made
- Results achieved

Presentation on acceptability: scenario analysis for energy production

Model:	Source	IPCC/CICS	Consultant	Consultant
	Rep. of reality	Unknown	Medium	High
	Theory/Sch.of thought	School	Est. Theory	Est. Theory
	Peer review	Yes	No	No
	Acceptance	Variable	-	-
Data:	Source	Various	MNR	-
	Primary/Sec.	Primary	Primary	-
	Theory/Sch.of thought	-	-	-
Key Assumptions:				
Ĵ	Rep. of reality	Medium	High	High
	Acceptance	Variable	High	High
Resulting Estimates:				
5	Indep. review	Yes	No	No
	Acceptance by review	Medium	-	-
	Overall confidence	Medium	Low-	Low-
			Medium	Medium

Guidelines

Basic issues to address:

- Identification of uncertainties about effects of:
 - Project on climate change and GHG emissions
 - Climate change on project
 - Climate change on impacts of project
- Scoping of above
- Method(s): Choice and Use
- Communication: Results and Acceptability

Recommended guidelines

Two sets:

- 1. Based on review of EAs
- 2. Based on the work reported here

Barrow and Lee (2003) report to CEAA

Acknowledgements and Reports

 Canadian Environmental Assessment Agency for funding

 Our report in a few months, and two CICS reports, available at:

http://www.ceaa-acee.gc.ca/015/0002/index_e.htm